{ "cells": [ { "cell_type": "markdown", "id": "c6a29764-f39c-431c-8e77-fbc6bfe20f01", "metadata": {}, "source": [ "# seagliderOG1 demo\n", "\n", "The purpose of this notebook is to demonstrate the functionality of `seagliderOG1` to convert from Seaglider basestation files to OG1 format.\n", "\n", "- OG1 format is a newly agreed format (since June 2024) for glider data sets from various platforms (e.g., Seaglider, Slocum, Seaexplorer). It lives on github here: (https://github.com/OceanGlidersCommunity/OG-format-user-manual).\n", "- OG1 manual: https://oceangliderscommunity.github.io/OG-format-user-manual/OG_Format.html\n", "\n", "The test case is to convert sg015 data from the Labrador Sea in September 2004.\n", "\n", "The demo is organised to show\n", "\n", "- Conversion of a single dive cycle (single `p*.nc` file)\n", "\n", "- Conversion for a folder of local dive-cycle files (full mission of `p*.nc` files)\n", "\n", "- Download from remote server + conversion (directory with full mission of `p*.nc` files)\n", "\n", "Options are provided to only load e.g. 10 files, but note that OG1 format expects a full mission.\n" ] }, { "cell_type": "code", "execution_count": 1, "id": "6a1920f3", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T13:53:05.851220Z", "iopub.status.busy": "2025-01-31T13:53:05.850840Z", "iopub.status.idle": "2025-01-31T13:53:07.360578Z", "shell.execute_reply": "2025-01-31T13:53:07.360023Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/home/runner/work/seagliderOG1/seagliderOG1\n", "['/home/runner/micromamba/envs/TEST/lib/python312.zip', '/home/runner/micromamba/envs/TEST/lib/python3.12', '/home/runner/micromamba/envs/TEST/lib/python3.12/lib-dynload', '', '/home/runner/micromamba/envs/TEST/lib/python3.12/site-packages', '/home/runner/work/seagliderOG1/seagliderOG1', '/home/runner/work/seagliderOG1/seagliderOG1/seagliderOG1']\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/runner/work/seagliderOG1/seagliderOG1/seagliderOG1/tools.py:549: SyntaxWarning: invalid escape sequence '\\d'\n", " fill_val = 2 ** (int(re.findall(\"\\d+\", str(new_dtype))[0]) - 1) - 1\n" ] } ], "source": [ "import pathlib\n", "import sys\n", "\n", "script_dir = pathlib.Path().parent.absolute()\n", "parent_dir = script_dir.parents[0]\n", "sys.path.append(str(parent_dir))\n", "sys.path.append(str(parent_dir) + '/seagliderOG1')\n", "print(parent_dir)\n", "print(sys.path)\n", "\n", "import xarray as xr\n", "import os\n", "import pooch\n", "from seagliderOG1 import readers, writers, plotters, tools\n", "from seagliderOG1 import convertOG1, vocabularies\n" ] }, { "cell_type": "code", "execution_count": null, "id": "e6095e63", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 2, "id": "1e070d18", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T13:53:07.362537Z", "iopub.status.busy": "2025-01-31T13:53:07.362067Z", "iopub.status.idle": "2025-01-31T13:53:07.364737Z", "shell.execute_reply": "2025-01-31T13:53:07.364333Z" } }, "outputs": [], "source": [ "# Specify the path for writing datafiles\n", "data_path = os.path.join(parent_dir, 'data')" ] }, { "cell_type": "markdown", "id": "803e373a", "metadata": {}, "source": [ "## Reading basestation files\n", "\n", "This has three ways to load a glider dataset.\n", "\n", "Load an example dataset using `seagliderOG1.fetchers.load_sample_dataset`\n", "\n", "Alternatively, use your own with e.g. `ds = xr.open_dataset('/path/to/yourfile.nc')`" ] }, { "cell_type": "markdown", "id": "02c414b4", "metadata": {}, "source": [ "### Load single sample dataset" ] }, { "cell_type": "code", "execution_count": 3, "id": "05ca56cf", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T13:53:07.366444Z", "iopub.status.busy": "2025-01-31T13:53:07.366122Z", "iopub.status.idle": "2025-01-31T13:53:07.664566Z", "shell.execute_reply": "2025-01-31T13:53:07.664059Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Downloading file 'p0330015_20100906.nc' from 'https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/033/20100903/p0330015_20100906.nc' to '/home/runner/.cache/seagliderOG1'.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/runner/work/seagliderOG1/seagliderOG1/seagliderOG1/readers.py:58: FutureWarning: In a future version of xarray decode_timedelta will default to False rather than None. To silence this warning, set decode_timedelta to True, False, or a 'CFTimedeltaCoder' instance.\n", " return xr.open_dataset(file_path)\n", "/home/runner/work/seagliderOG1/seagliderOG1/seagliderOG1/readers.py:58: FutureWarning: In a future version of xarray decode_timedelta will default to False rather than None. To silence this warning, set decode_timedelta to True, False, or a 'CFTimedeltaCoder' instance.\n", " return xr.open_dataset(file_path)\n", "/home/runner/work/seagliderOG1/seagliderOG1/seagliderOG1/readers.py:58: FutureWarning: In a future version of xarray decode_timedelta will default to False rather than None. To silence this warning, set decode_timedelta to True, False, or a 'CFTimedeltaCoder' instance.\n", " return xr.open_dataset(file_path)\n", "/home/runner/work/seagliderOG1/seagliderOG1/seagliderOG1/readers.py:58: FutureWarning: In a future version of xarray decode_timedelta will default to False rather than None. To silence this warning, set decode_timedelta to True, False, or a 'CFTimedeltaCoder' instance.\n", " return xr.open_dataset(file_path)\n", "/home/runner/work/seagliderOG1/seagliderOG1/seagliderOG1/readers.py:58: FutureWarning: In a future version of xarray decode_timedelta will default to False rather than None. To silence this warning, set decode_timedelta to True, False, or a 'CFTimedeltaCoder' instance.\n", " return xr.open_dataset(file_path)\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 290kB\n",
       "Dimensions:                                   (sg_data_point: 586,\n",
       "                                               gc_event: 36, gc_state: 10,\n",
       "                                               gps_info: 3, trajectory: 1)\n",
       "Coordinates:\n",
       "    ctd_time                                  (sg_data_point) datetime64[ns] 5kB ...\n",
       "    longitude                                 (sg_data_point) float64 5kB ...\n",
       "    latitude                                  (sg_data_point) float64 5kB ...\n",
       "    ctd_depth                                 (sg_data_point) float64 5kB ...\n",
       "  * trajectory                                (trajectory) int32 4B 15\n",
       "Dimensions without coordinates: sg_data_point, gc_event, gc_state, gps_info\n",
       "Data variables: (12/397)\n",
       "    salinity_qc                               (sg_data_point) |S1 586B ...\n",
       "    eng_depth                                 (sg_data_point) float64 5kB ...\n",
       "    eng_aa4330_Temp                           (sg_data_point) float64 5kB ...\n",
       "    eng_vbdCC                                 (sg_data_point) float64 5kB ...\n",
       "    north_displacement                        (sg_data_point) float64 5kB ...\n",
       "    east_displacement                         (sg_data_point) float64 5kB ...\n",
       "    ...                                        ...\n",
       "    sg_cal_optode_FoilCoefB0                  float64 8B ...\n",
       "    log_MISSION                               int32 4B ...\n",
       "    log_FG_AHR_24V                            float64 8B ...\n",
       "    log_ICE_FREEZE_MARGIN                     float64 8B ...\n",
       "    surface_curr_north                        float64 8B ...\n",
       "    log_RAFOS_DEVICE                          float64 8B ...\n",
       "Attributes: (12/59)\n",
       "    quality_control_version:         1.12\n",
       "    base_station_micro_version:      4935\n",
       "    time_coverage_resolution:        PT1S\n",
       "    geospatial_vertical_max:         511.8935394557861\n",
       "    sea_name:                        Caribbean Sea\n",
       "    mission:                         1\n",
       "    ...                              ...\n",
       "    source:                          Deepglider SG033\n",
       "    geospatial_vertical_min:         0.2601223952664329\n",
       "    creator_url:                     http://iop.apl.washington.edu/seaglider/...\n",
       "    geospatial_vertical_units:       meter\n",
       "    dive_number:                     15\n",
       "    disclaimer:                      Data has not been reviewed and is provid...
" ], "text/plain": [ " Size: 290kB\n", "Dimensions: (sg_data_point: 586,\n", " gc_event: 36, gc_state: 10,\n", " gps_info: 3, trajectory: 1)\n", "Coordinates:\n", " ctd_time (sg_data_point) datetime64[ns] 5kB ...\n", " longitude (sg_data_point) float64 5kB ...\n", " latitude (sg_data_point) float64 5kB ...\n", " ctd_depth (sg_data_point) float64 5kB ...\n", " * trajectory (trajectory) int32 4B 15\n", "Dimensions without coordinates: sg_data_point, gc_event, gc_state, gps_info\n", "Data variables: (12/397)\n", " salinity_qc (sg_data_point) |S1 586B ...\n", " eng_depth (sg_data_point) float64 5kB ...\n", " eng_aa4330_Temp (sg_data_point) float64 5kB ...\n", " eng_vbdCC (sg_data_point) float64 5kB ...\n", " north_displacement (sg_data_point) float64 5kB ...\n", " east_displacement (sg_data_point) float64 5kB ...\n", " ... ...\n", " sg_cal_optode_FoilCoefB0 float64 8B ...\n", " log_MISSION int32 4B ...\n", " log_FG_AHR_24V float64 8B ...\n", " log_ICE_FREEZE_MARGIN float64 8B ...\n", " surface_curr_north float64 8B ...\n", " log_RAFOS_DEVICE float64 8B ...\n", "Attributes: (12/59)\n", " quality_control_version: 1.12\n", " base_station_micro_version: 4935\n", " time_coverage_resolution: PT1S\n", " geospatial_vertical_max: 511.8935394557861\n", " sea_name: Caribbean Sea\n", " mission: 1\n", " ... ...\n", " source: Deepglider SG033\n", " geospatial_vertical_min: 0.2601223952664329\n", " creator_url: http://iop.apl.washington.edu/seaglider/...\n", " geospatial_vertical_units: meter\n", " dive_number: 15\n", " disclaimer: Data has not been reviewed and is provid..." ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ds = readers.load_sample_dataset()\n", "ds" ] }, { "cell_type": "markdown", "id": "5e1416e5", "metadata": {}, "source": [ "### Load datasets from a local directory" ] }, { "cell_type": "code", "execution_count": 4, "id": "83bba8ac", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T13:53:07.667093Z", "iopub.status.busy": "2025-01-31T13:53:07.666775Z", "iopub.status.idle": "2025-01-31T13:53:07.830668Z", "shell.execute_reply": "2025-01-31T13:53:07.830220Z" } }, "outputs": [ { "ename": "AttributeError", "evalue": "module 'seagliderOG1.readers' has no attribute 'read_basestation'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[4], line 6\u001b[0m\n\u001b[1;32m 2\u001b[0m input_dir \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/Users/eddifying/Dropbox/data/sg015-ncei-download\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Load and concatenate all datasets in the input directory\u001b[39;00m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# Optionally, specify the range of profiles to load (start_profile, end_profile)\u001b[39;00m\n\u001b[0;32m----> 6\u001b[0m list_datasets \u001b[38;5;241m=\u001b[39m \u001b[43mreaders\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_basestation\u001b[49m(input_dir, start_profile\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m500\u001b[39m, end_profile\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m503\u001b[39m)\n\u001b[1;32m 8\u001b[0m \u001b[38;5;66;03m# Where list_datasets is a list of xarray datasets. A single dataset can be accessed as\u001b[39;00m\n\u001b[1;32m 9\u001b[0m ds \u001b[38;5;241m=\u001b[39m list_datasets[\u001b[38;5;241m0\u001b[39m]\n", "\u001b[0;31mAttributeError\u001b[0m: module 'seagliderOG1.readers' has no attribute 'read_basestation'" ] } ], "source": [ "# Specify the input directory on your local machine\n", "input_dir = \"/Users/eddifying/Dropbox/data/sg015-ncei-download\"\n", "\n", "# Load and concatenate all datasets in the input directory\n", "# Optionally, specify the range of profiles to load (start_profile, end_profile)\n", "list_datasets = readers.read_basestation(input_dir, start_profile=500, end_profile=503)\n", "\n", "# Where list_datasets is a list of xarray datasets. A single dataset can be accessed as\n", "ds = list_datasets[0]" ] }, { "cell_type": "code", "execution_count": 5, "id": "926863fd", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T13:53:07.832493Z", "iopub.status.busy": "2025-01-31T13:53:07.832088Z", "iopub.status.idle": "2025-01-31T13:53:07.881141Z", "shell.execute_reply": "2025-01-31T13:53:07.880758Z" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 290kB\n",
       "Dimensions:                                   (sg_data_point: 586,\n",
       "                                               gc_event: 36, gc_state: 10,\n",
       "                                               gps_info: 3, trajectory: 1)\n",
       "Coordinates:\n",
       "    ctd_time                                  (sg_data_point) datetime64[ns] 5kB ...\n",
       "    longitude                                 (sg_data_point) float64 5kB ...\n",
       "    latitude                                  (sg_data_point) float64 5kB ...\n",
       "    ctd_depth                                 (sg_data_point) float64 5kB ...\n",
       "  * trajectory                                (trajectory) int32 4B 15\n",
       "Dimensions without coordinates: sg_data_point, gc_event, gc_state, gps_info\n",
       "Data variables: (12/397)\n",
       "    salinity_qc                               (sg_data_point) |S1 586B ...\n",
       "    eng_depth                                 (sg_data_point) float64 5kB ...\n",
       "    eng_aa4330_Temp                           (sg_data_point) float64 5kB ...\n",
       "    eng_vbdCC                                 (sg_data_point) float64 5kB ...\n",
       "    north_displacement                        (sg_data_point) float64 5kB ...\n",
       "    east_displacement                         (sg_data_point) float64 5kB ...\n",
       "    ...                                        ...\n",
       "    sg_cal_optode_FoilCoefB0                  float64 8B ...\n",
       "    log_MISSION                               int32 4B ...\n",
       "    log_FG_AHR_24V                            float64 8B ...\n",
       "    log_ICE_FREEZE_MARGIN                     float64 8B ...\n",
       "    surface_curr_north                        float64 8B ...\n",
       "    log_RAFOS_DEVICE                          float64 8B ...\n",
       "Attributes: (12/59)\n",
       "    quality_control_version:         1.12\n",
       "    base_station_micro_version:      4935\n",
       "    time_coverage_resolution:        PT1S\n",
       "    geospatial_vertical_max:         511.8935394557861\n",
       "    sea_name:                        Caribbean Sea\n",
       "    mission:                         1\n",
       "    ...                              ...\n",
       "    source:                          Deepglider SG033\n",
       "    geospatial_vertical_min:         0.2601223952664329\n",
       "    creator_url:                     http://iop.apl.washington.edu/seaglider/...\n",
       "    geospatial_vertical_units:       meter\n",
       "    dive_number:                     15\n",
       "    disclaimer:                      Data has not been reviewed and is provid...
" ], "text/plain": [ " Size: 290kB\n", "Dimensions: (sg_data_point: 586,\n", " gc_event: 36, gc_state: 10,\n", " gps_info: 3, trajectory: 1)\n", "Coordinates:\n", " ctd_time (sg_data_point) datetime64[ns] 5kB ...\n", " longitude (sg_data_point) float64 5kB ...\n", " latitude (sg_data_point) float64 5kB ...\n", " ctd_depth (sg_data_point) float64 5kB ...\n", " * trajectory (trajectory) int32 4B 15\n", "Dimensions without coordinates: sg_data_point, gc_event, gc_state, gps_info\n", "Data variables: (12/397)\n", " salinity_qc (sg_data_point) |S1 586B ...\n", " eng_depth (sg_data_point) float64 5kB ...\n", " eng_aa4330_Temp (sg_data_point) float64 5kB ...\n", " eng_vbdCC (sg_data_point) float64 5kB ...\n", " north_displacement (sg_data_point) float64 5kB ...\n", " east_displacement (sg_data_point) float64 5kB ...\n", " ... ...\n", " sg_cal_optode_FoilCoefB0 float64 8B ...\n", " log_MISSION int32 4B ...\n", " log_FG_AHR_24V float64 8B ...\n", " log_ICE_FREEZE_MARGIN float64 8B ...\n", " surface_curr_north float64 8B ...\n", " log_RAFOS_DEVICE float64 8B ...\n", "Attributes: (12/59)\n", " quality_control_version: 1.12\n", " base_station_micro_version: 4935\n", " time_coverage_resolution: PT1S\n", " geospatial_vertical_max: 511.8935394557861\n", " sea_name: Caribbean Sea\n", " mission: 1\n", " ... ...\n", " source: Deepglider SG033\n", " geospatial_vertical_min: 0.2601223952664329\n", " creator_url: http://iop.apl.washington.edu/seaglider/...\n", " geospatial_vertical_units: meter\n", " dive_number: 15\n", " disclaimer: Data has not been reviewed and is provid..." ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ds" ] }, { "cell_type": "markdown", "id": "f4040443", "metadata": {}, "source": [ "### Load datasets from a remote directory (URL)" ] }, { "cell_type": "code", "execution_count": 6, "id": "2913eb42", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T13:53:07.882852Z", "iopub.status.busy": "2025-01-31T13:53:07.882599Z", "iopub.status.idle": "2025-01-31T13:53:07.893062Z", "shell.execute_reply": "2025-01-31T13:53:07.892680Z" } }, "outputs": [ { "ename": "AttributeError", "evalue": "module 'seagliderOG1.readers' has no attribute 'read_basestation'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[6], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m server \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhttps://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/015/20040924/\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Load and concatenate all datasets from the server, optionally specifying the range of profiles to load\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m list_datasets \u001b[38;5;241m=\u001b[39m \u001b[43mreaders\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_basestation\u001b[49m(server, start_profile\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m500\u001b[39m, end_profile\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m503\u001b[39m)\n", "\u001b[0;31mAttributeError\u001b[0m: module 'seagliderOG1.readers' has no attribute 'read_basestation'" ] } ], "source": [ "# Specify the server where data are located\n", "server = \"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/015/20040924/\"\n", "\n", "# Load and concatenate all datasets from the server, optionally specifying the range of profiles to load\n", "list_datasets = readers.read_basestation(server, start_profile=500, end_profile=503)" ] }, { "cell_type": "markdown", "id": "89c4ebb6", "metadata": {}, "source": [ "## Convert to OG1 format\n", "\n", "Process:\n", "\n", "1. For one basestation dataset, split the dataset by dimension (`split_ds`)\n", "3. Transform into OG1 format: dataset with dims `sg_data_point`\n", " - Change the dimension to `N_MEASUREMENTS`\n", " - Rename variables according to `vocabularies.standard_names` \n", " - Assign variable attributes according to `vocabularies.vocab_attrs`. (Note: This *could* go wrong since it makes assumptions about the input variables. May need additional handling.)\n", "4. Add missing mandatory variables: \n", " - From `split_ds[(gps_info,)]`, add the `LATITUDE_GPS`, `LONGITUDE_GPS` and `TIME_GPS` (Note: presently `TIME_GPS` is stripped before saving, but `TIME` values contain `TIME_GPS`)\n", " - Create `PROFILE_NUMBER` and `PHASE`\n", " - Calculate `DEPTH_Z` which is positive up\n", "5. Update attributes for the file. \n", " - Combines `creator` and `contributor` from original attributes into `contributor`\n", " - Adds `contributing_institutions` based on `institution`\n", " - Reformats time in `time_coverage_*` and `start_time`--> `start_date`\n", " - Adds `date_modified`\n", " - Renames `comments`-->`history`, `site`-->`summary`\n", " - Adds `title`, `platform`, `platform_vocabulary`, `featureType`, `Conventions`, `rtqc_method*` according to OceanGliders format\n", " - Retains `naming_authority`, `institution`, `project`, `geospatial_*` as OG attributes\n", " - Retains extra attributes: `license`, `keywords`, `keywords_vocabulary`, `file_version`, `acknowledgement`, `date_created`, `disclaimer`\n", "\n", "Future behaviour to be added:\n", "\n", "6. Retain the variables starting with `sg_cal` and check whether they vary over the mission (shouldn't)\n", "6. Add sensors, using information in the `split_ds` with no dimensions\n", " - Need (from sg_cal_constants: `sg_cal` plus `volmax`, `vbd_cnts_per_cc`, `therm_expan`, `t_*`, `mass`, `hd_*`, `ctcor`, `cpcor`, `c_*`, `abs_compress`, `a`, `Tcor`, `Soc`, `Pcor`, `Foffset`)\n", " - Maybe also `reviewed`, `magnetic_variation` (which will change with position), `log_D_FLARE`, `flight_avg_speed_north` and `flight_avg_speed_east` also with `_gsm`, `depth_avg_curr_north` and `depth_avg_curr_east` also with `_gsm`, \n", " `wlbb2f` - means sensor\n", " `sg_cal_mission_title`\n", " `sg_cal_id_str`\n", " `calibcomm_oxygen`\n", " `calibcomm`\n", " `sbe41` means ??\n", " `hdm_qc`\n", " `glider`\n", " \n", "### Convert a single (sample) dataset" ] }, { "cell_type": "code", "execution_count": 7, "id": "dd041858-c498-4654-a7c8-1731beb839fc", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T13:53:07.894720Z", "iopub.status.busy": "2025-01-31T13:53:07.894414Z", "iopub.status.idle": "2025-01-31T13:53:07.968787Z", "shell.execute_reply": "2025-01-31T13:53:07.968288Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/runner/work/seagliderOG1/seagliderOG1/seagliderOG1/readers.py:58: FutureWarning: In a future version of xarray decode_timedelta will default to False rather than None. To silence this warning, set decode_timedelta to True, False, or a 'CFTimedeltaCoder' instance.\n", " return xr.open_dataset(file_path)\n", "/home/runner/work/seagliderOG1/seagliderOG1/seagliderOG1/readers.py:58: FutureWarning: In a future version of xarray decode_timedelta will default to False rather than None. To silence this warning, set decode_timedelta to True, False, or a 'CFTimedeltaCoder' instance.\n", " return xr.open_dataset(file_path)\n", "/home/runner/work/seagliderOG1/seagliderOG1/seagliderOG1/readers.py:58: FutureWarning: In a future version of xarray decode_timedelta will default to False rather than None. To silence this warning, set decode_timedelta to True, False, or a 'CFTimedeltaCoder' instance.\n", " return xr.open_dataset(file_path)\n", "/home/runner/work/seagliderOG1/seagliderOG1/seagliderOG1/readers.py:58: FutureWarning: In a future version of xarray decode_timedelta will default to False rather than None. To silence this warning, set decode_timedelta to True, False, or a 'CFTimedeltaCoder' instance.\n", " return xr.open_dataset(file_path)\n", "/home/runner/work/seagliderOG1/seagliderOG1/seagliderOG1/readers.py:58: FutureWarning: In a future version of xarray decode_timedelta will default to False rather than None. To silence this warning, set decode_timedelta to True, False, or a 'CFTimedeltaCoder' instance.\n", " return xr.open_dataset(file_path)\n" ] }, { "ename": "NameError", "evalue": "name 'ds1' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[7], line 4\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Loads one dataset (p0150500_20050213.nc)\u001b[39;00m\n\u001b[1;32m 2\u001b[0m ds \u001b[38;5;241m=\u001b[39m readers\u001b[38;5;241m.\u001b[39mload_sample_dataset()\n\u001b[0;32m----> 4\u001b[0m ds_OG1 \u001b[38;5;241m=\u001b[39m \u001b[43mconvertOG1\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconvert_to_OG1\u001b[49m\u001b[43m(\u001b[49m\u001b[43mds\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;66;03m# Check the results - uncomment the following lines to either generate a plot or show the variables.\u001b[39;00m\n\u001b[1;32m 7\u001b[0m plotters\u001b[38;5;241m.\u001b[39mplot_profile_depth(ds_OG1)\n", "File \u001b[0;32m~/work/seagliderOG1/seagliderOG1/seagliderOG1/convertOG1.py:37\u001b[0m, in \u001b[0;36mconvert_to_OG1\u001b[0;34m(list_of_datasets, contrib_to_append)\u001b[0m\n\u001b[1;32m 35\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m ds1_base \u001b[38;5;129;01min\u001b[39;00m list_of_datasets:\n\u001b[1;32m 36\u001b[0m varlist \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mset\u001b[39m(varlist \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mlist\u001b[39m(ds1_base\u001b[38;5;241m.\u001b[39mvariables)))\n\u001b[0;32m---> 37\u001b[0m ds_new, attr_warnings, sg_cal, dc_other, dc_log \u001b[38;5;241m=\u001b[39m \u001b[43mprocess_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[43mds1_base\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfirstrun\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 38\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ds_new:\n\u001b[1;32m 39\u001b[0m processed_datasets\u001b[38;5;241m.\u001b[39mappend(ds_new)\n", "File \u001b[0;32m~/work/seagliderOG1/seagliderOG1/seagliderOG1/convertOG1.py:174\u001b[0m, in \u001b[0;36mprocess_dataset\u001b[0;34m(ds1_base, firstrun)\u001b[0m\n\u001b[1;32m 172\u001b[0m divenum \u001b[38;5;241m=\u001b[39m ds1_base\u001b[38;5;241m.\u001b[39mattrs[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdive_number\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[1;32m 173\u001b[0m \u001b[38;5;66;03m# Split the dataset by unique dimensions\u001b[39;00m\n\u001b[0;32m--> 174\u001b[0m split_ds \u001b[38;5;241m=\u001b[39m tools\u001b[38;5;241m.\u001b[39msplit_by_unique_dims(\u001b[43mds1\u001b[49m)\n\u001b[1;32m 175\u001b[0m ds_sgdatapoint \u001b[38;5;241m=\u001b[39m split_ds[(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124msg_data_point\u001b[39m\u001b[38;5;124m'\u001b[39m,)]\n\u001b[1;32m 176\u001b[0m \u001b[38;5;66;03m# Extract the gps_info from the split dataset\u001b[39;00m\n", "\u001b[0;31mNameError\u001b[0m: name 'ds1' is not defined" ] } ], "source": [ "# Loads one dataset (p0150500_20050213.nc)\n", "ds = readers.load_sample_dataset()\n", "\n", "ds_OG1 = convertOG1.convert_to_OG1(ds)\n", "\n", "# Check the results - uncomment the following lines to either generate a plot or show the variables.\n", "plotters.plot_profile_depth(ds_OG1)" ] }, { "cell_type": "code", "execution_count": 8, "id": "a0c0c0ba", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T13:53:07.970836Z", "iopub.status.busy": "2025-01-31T13:53:07.970333Z", "iopub.status.idle": "2025-01-31T13:53:07.980502Z", "shell.execute_reply": "2025-01-31T13:53:07.980081Z" } }, "outputs": [ { "ename": "NameError", "evalue": "name 'ds_OG1' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[8], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Print to screen a table of the variables and variable attributes\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m#plotters.show_attributes(ds_OG1)\u001b[39;00m\n\u001b[0;32m----> 3\u001b[0m \u001b[43mds_OG1\u001b[49m\n", "\u001b[0;31mNameError\u001b[0m: name 'ds_OG1' is not defined" ] } ], "source": [ "# Print to screen a table of the variables and variable attributes\n", "#plotters.show_attributes(ds_OG1)\n", "ds_OG1" ] }, { "cell_type": "markdown", "id": "dc0a27f3", "metadata": {}, "source": [ "### Convert mission from a local directory of basestation files\n", "\n", "- For local data in the directory `input_dir`\n", "- Creates a plot of ctd_depth against ctd_time.\n" ] }, { "cell_type": "code", "execution_count": 9, "id": "9d202485", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T13:53:07.982140Z", "iopub.status.busy": "2025-01-31T13:53:07.981865Z", "iopub.status.idle": "2025-01-31T13:53:07.993449Z", "shell.execute_reply": "2025-01-31T13:53:07.993048Z" } }, "outputs": [ { "ename": "AttributeError", "evalue": "module 'seagliderOG1.readers' has no attribute 'read_basestation'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[9], line 6\u001b[0m\n\u001b[1;32m 2\u001b[0m input_dir \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/Users/eddifying/Dropbox/data/sg015-ncei-download\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Load and concatenate all datasets in the input directory\u001b[39;00m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# Optionally, specify the range of profiles to load (start_profile, end_profile)\u001b[39;00m\n\u001b[0;32m----> 6\u001b[0m list_datasets \u001b[38;5;241m=\u001b[39m \u001b[43mreaders\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_basestation\u001b[49m(input_dir, start_profile\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m500\u001b[39m, end_profile\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m503\u001b[39m)\n\u001b[1;32m 8\u001b[0m \u001b[38;5;66;03m# Convert the list of datasets to OG1\u001b[39;00m\n\u001b[1;32m 9\u001b[0m ds_OG1 \u001b[38;5;241m=\u001b[39m convertOG1\u001b[38;5;241m.\u001b[39mconvert_to_OG1(list_datasets)\n", "\u001b[0;31mAttributeError\u001b[0m: module 'seagliderOG1.readers' has no attribute 'read_basestation'" ] } ], "source": [ "# Specify the input directory on your local machine\n", "input_dir = \"/Users/eddifying/Dropbox/data/sg015-ncei-download\"\n", "\n", "# Load and concatenate all datasets in the input directory\n", "# Optionally, specify the range of profiles to load (start_profile, end_profile)\n", "list_datasets = readers.read_basestation(input_dir, start_profile=500, end_profile=503)\n", "\n", "# Convert the list of datasets to OG1\n", "ds_OG1 = convertOG1.convert_to_OG1(list_datasets)\n", "\n", "# Generate a simple plot\n", "plotters.plot_profile_depth(ds_OG1)\n", "#plotters.show_contents(ds_all,'attrs')" ] }, { "cell_type": "markdown", "id": "fa3f9e81", "metadata": {}, "source": [ "### Convert mission from the NCEI server (with p*nc files)\n", "\n", "- Data from the sg015 mission in the Labrador Sea (https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0111844), dataset identifier gov.noaa.nodc:0111844.\n" ] }, { "cell_type": "code", "execution_count": 10, "id": "4ac290a2", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T13:53:07.994972Z", "iopub.status.busy": "2025-01-31T13:53:07.994814Z", "iopub.status.idle": "2025-01-31T13:53:08.004706Z", "shell.execute_reply": "2025-01-31T13:53:08.004323Z" } }, "outputs": [ { "ename": "AttributeError", "evalue": "module 'seagliderOG1.readers' has no attribute 'read_basestation'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[10], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m server \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhttps://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/015/20040924/\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Load and concatenate all datasets from the server, optionally specifying the range of profiles to load\u001b[39;00m\n\u001b[0;32m----> 5\u001b[0m list_datasets \u001b[38;5;241m=\u001b[39m \u001b[43mreaders\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_basestation\u001b[49m(server, start_profile\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m500\u001b[39m, end_profile\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m503\u001b[39m)\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# Convert the list of datasets to OG1\u001b[39;00m\n\u001b[1;32m 8\u001b[0m ds_OG1 \u001b[38;5;241m=\u001b[39m convertOG1\u001b[38;5;241m.\u001b[39mconvert_to_OG1(list_datasets)\n", "\u001b[0;31mAttributeError\u001b[0m: module 'seagliderOG1.readers' has no attribute 'read_basestation'" ] } ], "source": [ "# Specify the server where data are located\n", "server = \"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/015/20040924/\"\n", "\n", "# Load and concatenate all datasets from the server, optionally specifying the range of profiles to load\n", "list_datasets = readers.read_basestation(server, start_profile=500, end_profile=503)\n", "\n", "# Convert the list of datasets to OG1\n", "ds_OG1 = convertOG1.convert_to_OG1(list_datasets)" ] }, { "cell_type": "markdown", "id": "54baa613", "metadata": {}, "source": [ "## Saving data\n", "\n", "Due to problems with writing `xarray` datasets as netCDF when attributes are not of a specified type (`str`, `Number`, `np.ndarray`, `np.number`, `list`, `tuple`), a function was written `save_dataset`." ] }, { "cell_type": "code", "execution_count": 11, "id": "3540ad10", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T13:53:08.006412Z", "iopub.status.busy": "2025-01-31T13:53:08.006078Z", "iopub.status.idle": "2025-01-31T13:53:08.016568Z", "shell.execute_reply": "2025-01-31T13:53:08.016149Z" } }, "outputs": [ { "ename": "NameError", "evalue": "name 'ds_OG1' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[11], line 8\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mexists(output_file):\n\u001b[1;32m 6\u001b[0m os\u001b[38;5;241m.\u001b[39mremove(output_file) \n\u001b[0;32m----> 8\u001b[0m writers\u001b[38;5;241m.\u001b[39msave_dataset(\u001b[43mds_OG1\u001b[49m, output_file);\n", "\u001b[0;31mNameError\u001b[0m: name 'ds_OG1' is not defined" ] } ], "source": [ "# Write the file\n", "# This writer catches errors in data types (DType errors) when using xr.to_netcdf()\n", "# The solution is to convert them to strings, which may be undesired behaviour\n", "output_file = os.path.join(data_path, 'demo_test.nc')\n", "if os.path.exists(output_file):\n", " os.remove(output_file) \n", "\n", "writers.save_dataset(ds_OG1, output_file);" ] }, { "cell_type": "code", "execution_count": 12, "id": "57da6f9e", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T13:53:08.018008Z", "iopub.status.busy": "2025-01-31T13:53:08.017851Z", "iopub.status.idle": "2025-01-31T13:53:08.159577Z", "shell.execute_reply": "2025-01-31T13:53:08.159012Z" } }, "outputs": [ { "ename": "FileNotFoundError", "evalue": "[Errno 2] No such file or directory: '/home/runner/work/seagliderOG1/seagliderOG1/data/demo_test.nc'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "File \u001b[0;32m~/micromamba/envs/TEST/lib/python3.12/site-packages/xarray/backends/file_manager.py:211\u001b[0m, in \u001b[0;36mCachingFileManager._acquire_with_cache_info\u001b[0;34m(self, needs_lock)\u001b[0m\n\u001b[1;32m 210\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 211\u001b[0m file \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_cache\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_key\u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 212\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m:\n", "File \u001b[0;32m~/micromamba/envs/TEST/lib/python3.12/site-packages/xarray/backends/lru_cache.py:56\u001b[0m, in \u001b[0;36mLRUCache.__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock:\n\u001b[0;32m---> 56\u001b[0m value \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_cache\u001b[49m\u001b[43m[\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 57\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_cache\u001b[38;5;241m.\u001b[39mmove_to_end(key)\n", "\u001b[0;31mKeyError\u001b[0m: [, ('/home/runner/work/seagliderOG1/seagliderOG1/data/demo_test.nc',), 'r', (('clobber', True), ('diskless', False), ('format', 'NETCDF4'), ('persist', False)), '2174b3b0-d56a-4819-a507-d7b74ddfa984']", "\nDuring handling of the above exception, another exception occurred:\n", "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[12], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Load the data saved\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m ds1 \u001b[38;5;241m=\u001b[39m \u001b[43mxr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mopen_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[43moutput_file\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Generate a simple plot\u001b[39;00m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m#plotters.show_contents(ds_all,'attrs')\u001b[39;00m\n\u001b[1;32m 6\u001b[0m plotters\u001b[38;5;241m.\u001b[39mplot_depth_colored(ds1, color_by\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPROFILE_NUMBER\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", "File \u001b[0;32m~/micromamba/envs/TEST/lib/python3.12/site-packages/xarray/backends/api.py:686\u001b[0m, in \u001b[0;36mopen_dataset\u001b[0;34m(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, inline_array, chunked_array_type, from_array_kwargs, backend_kwargs, **kwargs)\u001b[0m\n\u001b[1;32m 674\u001b[0m decoders \u001b[38;5;241m=\u001b[39m _resolve_decoders_kwargs(\n\u001b[1;32m 675\u001b[0m decode_cf,\n\u001b[1;32m 676\u001b[0m open_backend_dataset_parameters\u001b[38;5;241m=\u001b[39mbackend\u001b[38;5;241m.\u001b[39mopen_dataset_parameters,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 682\u001b[0m decode_coords\u001b[38;5;241m=\u001b[39mdecode_coords,\n\u001b[1;32m 683\u001b[0m )\n\u001b[1;32m 685\u001b[0m overwrite_encoded_chunks \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moverwrite_encoded_chunks\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[0;32m--> 686\u001b[0m backend_ds \u001b[38;5;241m=\u001b[39m \u001b[43mbackend\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mopen_dataset\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 687\u001b[0m \u001b[43m \u001b[49m\u001b[43mfilename_or_obj\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 688\u001b[0m \u001b[43m \u001b[49m\u001b[43mdrop_variables\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdrop_variables\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 689\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mdecoders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 690\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 691\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 692\u001b[0m ds \u001b[38;5;241m=\u001b[39m _dataset_from_backend_dataset(\n\u001b[1;32m 693\u001b[0m backend_ds,\n\u001b[1;32m 694\u001b[0m filename_or_obj,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 704\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m 705\u001b[0m )\n\u001b[1;32m 706\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ds\n", "File \u001b[0;32m~/micromamba/envs/TEST/lib/python3.12/site-packages/xarray/backends/netCDF4_.py:666\u001b[0m, in \u001b[0;36mNetCDF4BackendEntrypoint.open_dataset\u001b[0;34m(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, group, mode, format, clobber, diskless, persist, auto_complex, lock, autoclose)\u001b[0m\n\u001b[1;32m 644\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mopen_dataset\u001b[39m(\n\u001b[1;32m 645\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 646\u001b[0m filename_or_obj: \u001b[38;5;28mstr\u001b[39m \u001b[38;5;241m|\u001b[39m os\u001b[38;5;241m.\u001b[39mPathLike[Any] \u001b[38;5;241m|\u001b[39m ReadBuffer \u001b[38;5;241m|\u001b[39m AbstractDataStore,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 663\u001b[0m autoclose\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[1;32m 664\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Dataset:\n\u001b[1;32m 665\u001b[0m filename_or_obj \u001b[38;5;241m=\u001b[39m _normalize_path(filename_or_obj)\n\u001b[0;32m--> 666\u001b[0m store \u001b[38;5;241m=\u001b[39m \u001b[43mNetCDF4DataStore\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mopen\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 667\u001b[0m \u001b[43m \u001b[49m\u001b[43mfilename_or_obj\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 668\u001b[0m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 669\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mformat\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mformat\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 670\u001b[0m \u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 671\u001b[0m \u001b[43m \u001b[49m\u001b[43mclobber\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mclobber\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 672\u001b[0m \u001b[43m \u001b[49m\u001b[43mdiskless\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdiskless\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 673\u001b[0m \u001b[43m \u001b[49m\u001b[43mpersist\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpersist\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 674\u001b[0m \u001b[43m \u001b[49m\u001b[43mauto_complex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mauto_complex\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 675\u001b[0m \u001b[43m \u001b[49m\u001b[43mlock\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlock\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 676\u001b[0m \u001b[43m \u001b[49m\u001b[43mautoclose\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mautoclose\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 677\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 679\u001b[0m store_entrypoint \u001b[38;5;241m=\u001b[39m StoreBackendEntrypoint()\n\u001b[1;32m 680\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m close_on_error(store):\n", "File \u001b[0;32m~/micromamba/envs/TEST/lib/python3.12/site-packages/xarray/backends/netCDF4_.py:452\u001b[0m, in \u001b[0;36mNetCDF4DataStore.open\u001b[0;34m(cls, filename, mode, format, group, clobber, diskless, persist, auto_complex, lock, lock_maker, autoclose)\u001b[0m\n\u001b[1;32m 448\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mauto_complex\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m auto_complex\n\u001b[1;32m 449\u001b[0m manager \u001b[38;5;241m=\u001b[39m CachingFileManager(\n\u001b[1;32m 450\u001b[0m netCDF4\u001b[38;5;241m.\u001b[39mDataset, filename, mode\u001b[38;5;241m=\u001b[39mmode, kwargs\u001b[38;5;241m=\u001b[39mkwargs\n\u001b[1;32m 451\u001b[0m )\n\u001b[0;32m--> 452\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mmanager\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mgroup\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlock\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlock\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mautoclose\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mautoclose\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/micromamba/envs/TEST/lib/python3.12/site-packages/xarray/backends/netCDF4_.py:393\u001b[0m, in \u001b[0;36mNetCDF4DataStore.__init__\u001b[0;34m(self, manager, group, mode, lock, autoclose)\u001b[0m\n\u001b[1;32m 391\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_group \u001b[38;5;241m=\u001b[39m group\n\u001b[1;32m 392\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mode \u001b[38;5;241m=\u001b[39m mode\n\u001b[0;32m--> 393\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mformat \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mds\u001b[49m\u001b[38;5;241m.\u001b[39mdata_model\n\u001b[1;32m 394\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_filename \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mds\u001b[38;5;241m.\u001b[39mfilepath()\n\u001b[1;32m 395\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mis_remote \u001b[38;5;241m=\u001b[39m is_remote_uri(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_filename)\n", "File \u001b[0;32m~/micromamba/envs/TEST/lib/python3.12/site-packages/xarray/backends/netCDF4_.py:461\u001b[0m, in \u001b[0;36mNetCDF4DataStore.ds\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 459\u001b[0m \u001b[38;5;129m@property\u001b[39m\n\u001b[1;32m 460\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21mds\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m--> 461\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_acquire\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/micromamba/envs/TEST/lib/python3.12/site-packages/xarray/backends/netCDF4_.py:455\u001b[0m, in \u001b[0;36mNetCDF4DataStore._acquire\u001b[0;34m(self, needs_lock)\u001b[0m\n\u001b[1;32m 454\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21m_acquire\u001b[39m(\u001b[38;5;28mself\u001b[39m, needs_lock\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[0;32m--> 455\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_manager\u001b[38;5;241m.\u001b[39macquire_context(needs_lock) \u001b[38;5;28;01mas\u001b[39;00m root:\n\u001b[1;32m 456\u001b[0m ds \u001b[38;5;241m=\u001b[39m _nc4_require_group(root, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_group, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mode)\n\u001b[1;32m 457\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ds\n", "File \u001b[0;32m~/micromamba/envs/TEST/lib/python3.12/contextlib.py:137\u001b[0m, in \u001b[0;36m_GeneratorContextManager.__enter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 135\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mkwds, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 137\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mnext\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgen\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 138\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m:\n\u001b[1;32m 139\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mRuntimeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgenerator didn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt yield\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m\n", "File \u001b[0;32m~/micromamba/envs/TEST/lib/python3.12/site-packages/xarray/backends/file_manager.py:199\u001b[0m, in \u001b[0;36mCachingFileManager.acquire_context\u001b[0;34m(self, needs_lock)\u001b[0m\n\u001b[1;32m 196\u001b[0m \u001b[38;5;129m@contextlib\u001b[39m\u001b[38;5;241m.\u001b[39mcontextmanager\n\u001b[1;32m 197\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21macquire_context\u001b[39m(\u001b[38;5;28mself\u001b[39m, needs_lock\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m):\n\u001b[1;32m 198\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Context manager for acquiring a file.\"\"\"\u001b[39;00m\n\u001b[0;32m--> 199\u001b[0m file, cached \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_acquire_with_cache_info\u001b[49m\u001b[43m(\u001b[49m\u001b[43mneeds_lock\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 200\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m file\n", "File \u001b[0;32m~/micromamba/envs/TEST/lib/python3.12/site-packages/xarray/backends/file_manager.py:217\u001b[0m, in \u001b[0;36mCachingFileManager._acquire_with_cache_info\u001b[0;34m(self, needs_lock)\u001b[0m\n\u001b[1;32m 215\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mcopy()\n\u001b[1;32m 216\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmode\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mode\n\u001b[0;32m--> 217\u001b[0m file \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_opener\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 218\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mode \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mw\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 219\u001b[0m \u001b[38;5;66;03m# ensure file doesn't get overridden when opened again\u001b[39;00m\n\u001b[1;32m 220\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mode \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124ma\u001b[39m\u001b[38;5;124m\"\u001b[39m\n", "File \u001b[0;32msrc/netCDF4/_netCDF4.pyx:2521\u001b[0m, in \u001b[0;36mnetCDF4._netCDF4.Dataset.__init__\u001b[0;34m()\u001b[0m\n", "File \u001b[0;32msrc/netCDF4/_netCDF4.pyx:2158\u001b[0m, in \u001b[0;36mnetCDF4._netCDF4._ensure_nc_success\u001b[0;34m()\u001b[0m\n", "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/home/runner/work/seagliderOG1/seagliderOG1/data/demo_test.nc'" ] } ], "source": [ "# Load the data saved\n", "ds1 = xr.open_dataset(output_file)\n", "\n", "# Generate a simple plot\n", "#plotters.show_contents(ds_all,'attrs')\n", "plotters.plot_depth_colored(ds1, color_by='PROFILE_NUMBER')\n" ] }, { "cell_type": "markdown", "id": "7eaed738", "metadata": {}, "source": [ "## Run multiple missions" ] }, { "cell_type": "code", "execution_count": 13, "id": "12f47f0f", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T13:53:08.161286Z", "iopub.status.busy": "2025-01-31T13:53:08.161099Z", "iopub.status.idle": "2025-01-31T13:53:08.163898Z", "shell.execute_reply": "2025-01-31T13:53:08.163428Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'contributor_name': 'Eleanor Frajka-Williams', 'contributor_email': 'eleanorfrajka@gmail.com', 'contributor_role': 'Data scientist', 'contributor_role_vocabulary': 'http://vocab.nerc.ac.uk/search_nvs/W08', 'contributing_institutions': 'University of Hamburg - Institute of Oceanography', 'contributing_institutions_vocabulary': 'https://edmo.seadatanet.org/report/1156', 'contributing_institutions_role': 'Data scientist', 'contributing_institutions_role_vocabulary': 'http://vocab.nerc.ac.uk/search_nvs/W08'}\n" ] } ], "source": [ "# Add these to existing attributes - update to your details\n", "contrib_to_append = vocabularies.contrib_to_append\n", "print(contrib_to_append)" ] }, { "cell_type": "code", "execution_count": 14, "id": "f6127a51", "metadata": { "execution": { "iopub.execute_input": "2025-01-31T13:53:08.165539Z", "iopub.status.busy": "2025-01-31T13:53:08.165211Z", "iopub.status.idle": "2025-01-31T13:53:08.910408Z", "shell.execute_reply": "2025-01-31T13:53:08.909867Z" } }, "outputs": [ { "ename": "KeyError", "evalue": "\"Requested sample dataset p0140001_20040924.nc not known. Specify one of the following available datasets: ['p0330001_20100903.nc', 'p0330002_20100903.nc', 'p0330003_20100903.nc', 'p0330004_20100904.nc', 'p0330005_20100904.nc', 'p0330006_20100904.nc', 'p0330007_20100905.nc', 'p0330008_20100905.nc', 'p0330009_20100905.nc', 'p0330010_20100905.nc', 'p0330011_20100905.nc', 'p0330012_20100905.nc', 'p0330013_20100906.nc', 'p0330014_20100906.nc', 'p0330015_20100906.nc', 'p0330016_20100906.nc', 'p0330017_20100906.nc', 'p0330018_20100906.nc', 'p0330019_20100906.nc']\"", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[14], line 33\u001b[0m\n\u001b[1;32m 2\u001b[0m input_locations \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# Either Iceland, Faroes or RAPID/MOCHA\u001b[39;00m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m#\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/005/20090829/\", # done\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 28\u001b[0m \u001b[38;5;66;03m#\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/034/20110128/\",\u001b[39;00m\n\u001b[1;32m 29\u001b[0m ]\n\u001b[1;32m 31\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m input_loc \u001b[38;5;129;01min\u001b[39;00m input_locations:\n\u001b[1;32m 32\u001b[0m \u001b[38;5;66;03m# Example usage\u001b[39;00m\n\u001b[0;32m---> 33\u001b[0m ds_all \u001b[38;5;241m=\u001b[39m \u001b[43mconvertOG1\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprocess_and_save_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_loc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moutput_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msave\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrun_quietly\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/work/seagliderOG1/seagliderOG1/seagliderOG1/convertOG1.py:600\u001b[0m, in \u001b[0;36mprocess_and_save_data\u001b[0;34m(input_location, save, output_dir, run_quietly)\u001b[0m\n\u001b[1;32m 584\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 585\u001b[0m \u001b[38;5;124;03mProcesses and saves data from the specified input location.\u001b[39;00m\n\u001b[1;32m 586\u001b[0m \u001b[38;5;124;03mThis function loads and concatenates datasets from the server, converts them to OG1 format,\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 596\u001b[0m \u001b[38;5;124;03mxarray.Dataset: The processed dataset.\u001b[39;00m\n\u001b[1;32m 597\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 599\u001b[0m \u001b[38;5;66;03m# Load and concatenate all datasets from the server\u001b[39;00m\n\u001b[0;32m--> 600\u001b[0m ds1_base \u001b[38;5;241m=\u001b[39m \u001b[43mreaders\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload_first_basestation_file\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_location\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 602\u001b[0m \u001b[38;5;66;03m# Convert the list of datasets to OG1\u001b[39;00m\n\u001b[1;32m 603\u001b[0m ds1_og1, varlist \u001b[38;5;241m=\u001b[39m convert_to_OG1(ds1_base)\n", "File \u001b[0;32m~/work/seagliderOG1/seagliderOG1/seagliderOG1/readers.py:161\u001b[0m, in \u001b[0;36mload_first_basestation_file\u001b[0;34m(source)\u001b[0m\n\u001b[1;32m 159\u001b[0m filename \u001b[38;5;241m=\u001b[39m file_list[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 160\u001b[0m start_profile \u001b[38;5;241m=\u001b[39m _profnum_from_filename(filename)\n\u001b[0;32m--> 161\u001b[0m datasets \u001b[38;5;241m=\u001b[39m \u001b[43mload_basestation_files\u001b[49m\u001b[43m(\u001b[49m\u001b[43msource\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstart_profile\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstart_profile\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 162\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m datasets[\u001b[38;5;241m0\u001b[39m]\n", "File \u001b[0;32m~/work/seagliderOG1/seagliderOG1/seagliderOG1/readers.py:183\u001b[0m, in \u001b[0;36mload_basestation_files\u001b[0;34m(source, start_profile, end_profile)\u001b[0m\n\u001b[1;32m 181\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m file \u001b[38;5;129;01min\u001b[39;00m filtered_files:\n\u001b[1;32m 182\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m source\u001b[38;5;241m.\u001b[39mstartswith(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhttp://\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m source\u001b[38;5;241m.\u001b[39mstartswith(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhttps://\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[0;32m--> 183\u001b[0m ds \u001b[38;5;241m=\u001b[39m \u001b[43mload_sample_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfile\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 184\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 185\u001b[0m ds \u001b[38;5;241m=\u001b[39m xr\u001b[38;5;241m.\u001b[39mopen_dataset(os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(source, file))\n", "File \u001b[0;32m~/work/seagliderOG1/seagliderOG1/seagliderOG1/readers.py:61\u001b[0m, in \u001b[0;36mload_sample_dataset\u001b[0;34m(dataset_name)\u001b[0m\n\u001b[1;32m 59\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 60\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRequested sample dataset \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mdataset_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m not known. Specify one of the following available datasets: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlist\u001b[39m(data_source_og\u001b[38;5;241m.\u001b[39mregistry\u001b[38;5;241m.\u001b[39mkeys())\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m---> 61\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m(msg)\n", "\u001b[0;31mKeyError\u001b[0m: \"Requested sample dataset p0140001_20040924.nc not known. Specify one of the following available datasets: ['p0330001_20100903.nc', 'p0330002_20100903.nc', 'p0330003_20100903.nc', 'p0330004_20100904.nc', 'p0330005_20100904.nc', 'p0330006_20100904.nc', 'p0330007_20100905.nc', 'p0330008_20100905.nc', 'p0330009_20100905.nc', 'p0330010_20100905.nc', 'p0330011_20100905.nc', 'p0330012_20100905.nc', 'p0330013_20100906.nc', 'p0330014_20100906.nc', 'p0330015_20100906.nc', 'p0330016_20100906.nc', 'p0330017_20100906.nc', 'p0330018_20100906.nc', 'p0330019_20100906.nc']\"" ] } ], "source": [ "# Specify a list of servers or local directories\n", "input_locations = [\n", " # Either Iceland, Faroes or RAPID/MOCHA\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/005/20090829/\", # done\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/005/20080606/\", # done\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/005/20081106/\", # done\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/012/20070831/\", # done\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/014/20080214/\", # done\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/014/20080222/\", # done\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/016/20061112/\", # done\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/016/20090605/\", # done\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/016/20071113/\", # done\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/016/20080607/\", # done\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/033/20100518/\", # done \n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/033/20100903/\", # done\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/101/20081108/\", # done\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/101/20061112/\", # done\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/101/20070609/\", # done\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/102/20061112/\", # done\n", " # Labrador Sea\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/015/20040924/\",\n", " \"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/014/20040924/\",\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/008/20031002/\",\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/004/20031002/\",\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/016/20050406/\",\n", " # RAPID/MOCHA\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/033/20100729/\",\n", " #\"https://www.ncei.noaa.gov/data/oceans/glider/seaglider/uw/034/20110128/\",\n", "]\n", "\n", "for input_loc in input_locations:\n", " # Example usage\n", " ds_all = convertOG1.process_and_save_data(input_loc, output_dir=data_path, save=True, run_quietly=True)" ] }, { "cell_type": "code", "execution_count": null, "id": "4fefe79f", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.8" } }, "nbformat": 4, "nbformat_minor": 5 }